Structure of a sheared soft-disk fluid from a nonequilibrium potential.

نویسندگان

  • C Baig
  • Yu V Kalyuzhnyi
  • S T Cui
  • H D Cochran
چکیده

The distortion of structure of a simple, inverse-12, soft-disk fluid undergoing two-dimensional plane Couette flow was studied by nonequilibrium molecular dynamics (NEMD) simulation and by equilibrium Monte Carlo (MC) simulation with a nonequilibrium potential, under which the equilibrium structure of the fluid is that of the nonequilibrium fluid. Extension of the iterative predictor-corrector method of [Phys. Rev. A 33, 3451 (1986)]] was used to extract the nonequilibrium potential with the structure input from the NEMD simulation. Very good agreement for the structural properties and pressure tensor generated by the NEMD and MC simulation methods was found, thus providing the evidence that nonequilibrium liquid structure can be accurately reproduced via simple equilibrium simulations or theories using a properly chosen nonequilibrium potential. The method developed in the present study and numerical results presented here can be used to guide and test theoretical developments, providing them with the "experimental" results for the nonequilibrium potential.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical mechanics far from equilibrium: prediction and test for a sheared system.

We report the application of a far-from-equilibrium statistical-mechanical theory to a nontrivial system with Newtonian interactions in continuous boundary-driven flow. By numerically time stepping the force-balance equations of a one-dimensional model fluid we measure occupancies and transition rates in simulation. The high-shear-rate simulation data reproduce the predicted invariant quantitie...

متن کامل

Chapman-Enskog expansion about nonequilibrium states with application to the sheared granular fluid.

The Chapman-Enskog method of solution of kinetic equations, such as the Boltzmann equation, is based on an expansion in gradients of the deviations of the hydrodynamic fields from a uniform reference state (e.g., local equilibrium). This paper presents an extension of the method so as to allow for expansions about arbitrary, far-from-equilibrium reference states. The primary result is a set of ...

متن کامل

Shearing a glassy material: numerical tests of nonequilibrium mode-coupling approaches and experimental proposals.

The predictions of a nonequilibrium schematic mode-coupling theory developed to describe the nonlinear rheology of soft glassy materials have been numerically tested in a sheared binary Lennard-Jones mixture. In this Letter, we focus on the existence, behavior, and properties of an effective temperature T(eff) for the slow modes of the fluid, as defined from a generalized fluctuation-dissipatio...

متن کامل

The nonequilibrium glassy dynamics of self-propelled particles.

We study the glassy dynamics taking place in dense assemblies of athermal active particles that are driven solely by a nonequilibrium self-propulsion mechanism. Active forces are modeled as an Ornstein-Uhlenbeck stochastic process, characterized by a persistence time and an effective temperature, and particles interact via a Lennard-Jones potential that yields well-studied glassy behavior in th...

متن کامل

Dynamical Ensembles in Nonequilibrium Statistical Mechanics.

Ruelle’s principle for turbulence leading to what is usually called the Sinai-Ruelle-Bowen distribution (SRB) is applied to the statistical mechanics of many particle systems in nonequilibrium stationary states. A specific prediction, obtained without the need to construct explicitly the SRB itself, is shown to be in agreement with a recent computer experiment on a strongly sheared fluid. This ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 70 6 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2004